Amor Nafkha

Publications :

  • Communication dans un congrès - 57 documents
  • Rapport - 2 documents
    • Jean-Baptiste Doré, David Demmer, Rafik Zayani, Mabrouk Asma, Didier Le Ruyet, Hmaied Shaiek, Pascal Chevalier, Amor Nafkha, Haïfa Farès, Yoann Corre, Aymen Jaziri. ANR-POSEIDON Deliverable D1.1: Scenario description KPIs and PHY requirements, 2023-09-20. (https://cea.hal.science/cea-04213326v2)
    • Yves Louët, Amor Nafkha, Hmaied Shaiek, Daniel Roviras, Rafik Zayani. Waveforms MOdels for Machine Type CommuNication inteGrating 5G Networks (WONG5) Document Number D3.3 Overall power budget, 2018-05-12. (https://cnam.hal.science/hal-02456416v1)
  • Article dans une revue - 21 documents
    • Julio Manco-Vasquez, Iyad Dayoub, Amor Nafkha, Mohammad Alibakhshikenari, Hayfa Ben Thameur. Spectrum Sensing Using Software Defined Radio for Cognitive Radio Networks: A Survey, 2022. (https://hal.science/hal-03926173v1)
    • Ali Zeineddine, Amor Nafkha, Stéphane Paquelet, Christophe Moy, Pierre Yves Jezequel. Comprehensive Survey of FIR-Based Sample Rate Conversion, 2021-01. (https://hal.science/hal-02912947v1)
    • Bastien Trotobas, Adrien Llave, Amor Nafkha, Yves Louët. When Should We Use Geometrical-Based MIMO Detection Instead of Tree-Based Techniques? A Pareto Analysis, 2020-10-19. (https://hal.science/hal-02963699v2)
    • Amor Nafkha. Standard Condition Number Based Spectrum Sensing Under Asynchronous Primary User Activity, 2020-08-31. (https://hal.science/hal-02928957v1)
    • Bastien Trotobas, Youness Akourim, Amor Nafkha, Yves Louët, Jacques Weiss. Evaluation of the Complexity, Performance and Implementability of Geometrical MIMO Detectors: the Example of the Exploration and Exploitation List Detector, 2020-06. (https://centralesupelec.hal.science/hal-02615174v2)
    • Amor Nafkha, Nizar Demni. Closed-Form Expressions of Ergodic Capacity and MMSE Achievable Sum Rate for MIMO Jacobi and Rayleigh Fading Channels, 2020. (https://hal.science/hal-02919427v1)
    • Stéphane Paquelet, Ali Zeineddine, Amor Nafkha, Pierre-Yves Jezequel, Christophe Moy. Convergence of the Newton Structure Transfer Function to the Ideal Fractional Delay Filter, 2019-09. (https://hal.science/hal-02176477v1)
    • Hussein Kobeissi, Youssef Nasser, Oussama Bazzi, Amor Nafkha, Yves Louet. ELASTIC- Enabling Massive-Antenna for Joint Spectrum Sensing and Sharing: How Many Antennas Do We Need?, 2019-06. (https://hal.science/hal-02151864v1)
    • Hussein Kobeissi, Youssef, Joseph Nasser, Amor Nafkha, Oussama Bazzi, Yves Louet. Asymptotic Approximation of the Standard Condition Number Detector for Large Multi-Antenna Cognitive Radio Systems, 2017-05-31. (https://hal.science/hal-01533171v1)
    • Hussein Kobeissi, Amor Nafkha, Youssef Nasser, Oussama Bazzi, Yves Louët. On the Performance Analysis and Evaluation of Scaled Largest Eigenvalue in Spectrum Sensing: A Simple Form Approach, 2017. (https://hal.science/hal-01477167v1)
    • Amor Nafkha, Rémi Bonnefoi. Upper and lower bounds for the ergodic capacity of MIMO Jacobi fading channels, 2017. (https://hal.science/hal-01523024v1)
    • Hussein Kobeissi, Amor Nafkha, Youssef Nasser, Yves Louët, Oussama Bazzi. Approximating the standard condition number for cognitive radio spectrum sensing with finite number of sensors, 2017. (https://hal.science/hal-01431348v1)
    • Hussein Kobeissi, Youssef, Joseph Nasser, Amor Nafkha, Oussama Bazzi, Yves Louët. On the detection probability of the standard condition number detector in finite-dimensional cognitive radio context, 2016-05-23. (https://hal.science/hal-01431380v1)
    • Amor Nafkha, Babar Aziz. Closed-formApproximation for the Performance of Finite Sample-Based Energy Detection Using Correlated Receiving Antennas, 2014-08. (https://centralesupelec.hal.science/hal-01072505v1)
    • Mohammed Al-Husseini, Ali El-Hajj, Mario Bkassiny, Said El-Khamy, Amor Nafkha. Antennas and RF Front Ends for Cognitive Radio, 2014-06. (https://centralesupelec.hal.science/hal-01072493v1)
    • Lise Safatly, Babar Aziz, Amor Nafkha, Yves Louët, Youssef Nasser, Ali El Hajj. Blind Spectrum Sensing Using Symmetry Property of Cyclic Autocorrelation Function: From Theory to Practice, 2014-02. (https://centralesupelec.hal.science/hal-01004810v1)
    • Manel Hentati, Amor Nafkha, Pierre Leray, Jean François Nezan, Mohamed Abid. Software Defined Radio Equipment: What's the Best Design Approach to Reduce Power Consumption and Increase Reconfigurability ?, 2012-05. (https://hal.science/hal-00763928v1)
    • Mohamad Mroue, Amor Nafkha, Jacques Palicot, Benjamin Gavalda, Nelly Dagorne. Performance and Implementation Evaluation of TR PAPR Reduction Methods for DVB-T2, 2010-08-26. (https://centralesupelec.hal.science/hal-00552124v1)
    • Ziad Khalaf, Amor Nafkha, Jacques Palicot, Mohamed Ghozzi. Low Complexity Enhanced Hybrid Spectrum Sensing Architectures for Cognitive Radio Equipment, 2010. (https://centralesupelec.hal.science/hal-00606042v1)
    • Amor Nafkha, Emmanuel Boutillon, Christian Roland. Quasi-Maximum-Likelihood Detector Based on Geometrical Diversification Greedy Intensification, 2009-04-01. (https://hal.science/hal-00450001v1)
    • David Gnaedig, Emmanuel Boutillon, Eric Martin, Michel Jezequel, Amor Nafkha, Jacky Tousch, N. Brengarth. High level synthesis for behavioral design of the MAP algorithm for turbo decoder, 2004. (https://hal.science/hal-02294319v1)
  • HDR - 1 document
  • Pré-publication, Document de travail - 1 document
  • Chapitre d'ouvrage - 2 documents
  • Ouvrage - 2 documents
    • Jacques Palicot, Christophe Moy, Sufi Tabassum Gul, Merouane Debbah, Romain Couillet, Hamidou Tembine, Renaud Seguier, Daniel Le Guennec, Wassim Jouini, Gilles Tourneur, Yves Louët, Amor Nafkha, Pierre Leray, Renaud Loison, Raphaël Gillard. Radio Engineering: From Software Radio to Cognitive Radio, 2011-08. (https://centralesupelec.hal.science/hal-00657728v1)
    • Jacques Palicot, Christophe Moy, Merouane Debbah, Romain Couillet, Hamidou Tembine, Renaud Séguier, Daniel Le Guennec, Wassim Jouini, Gilles Tourneur, Yves Louët, Amor Nafkha, Pierre Leray, Renaud Loison, Raphaël Gillard. De la radio logicielle à la radio intelligente, 2010-11. (https://centralesupelec.hal.science/hal-00547368v1)